1. (8 points) Consider the following Scala function:

```scala
def m(a: Int, b: Int): (Int, Int) = {
  var x = a
  var y = 0
  while (x >= b) {
    x = x - b
    y = y + 1
  }
  (y, x) // Return this pair
}
```

(a) What is the result of `m(10, 3)`?

```
(3, 1)
```

(b) Give an invariant relating the values of `x` and `y` each time the `while` test is evaluated:

```
x = a - y * b
```

(c) What function is computed by `m(a, b)`? Support your claim using your invariant. You should assume that `a >= 0` and `b > 0`.

```
a + end, a = y * b + x, (invariant)
and x < b, (loop exit)
```

So `m(a, b) = (a/b, a % b)`
2. (5 points) Suppose the running time \(T(N) \) of some algorithm is given by the following recurrence:

\[
\begin{align*}
T(1) &= 1 \\
T(N) &= T(N-1) + 2N - 1, \quad (N > 1)
\end{align*}
\]

(a) Fill in the following table of values. For the last entry, give a closed-form expression for \(T(N) \), either by solving the recurrence or by guessing:

<table>
<thead>
<tr>
<th>(T(1))</th>
<th>(T(2))</th>
<th>(T(3))</th>
<th>(T(4))</th>
<th>(T(N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>(N^2)</td>
</tr>
</tbody>
</table>

\[
T(N) = T(N-1) + 2N - 1 \\
= T(N-2) + 2(N-1) - 1 + 2N - 1 \\
= T(N-3) + 2[(N-2) + (N-1) + N] - 3 \\
= \ldots = T(1) + 2[2 + \ldots + (N-1) + N] - (N-1) \\
= 1 + 2\left[\frac{(N-1)(N+1)}{2}\right] - N + 1
\]

(b) Prove by induction that your closed-form expression for \(T(N) \) is correct.

Base case: \(T(1) = 1^2 = 1 \) \(\checkmark \)

\[
\sqrt{\text{Ind. step: suppose } T(N) = N^2, \text{ for some } N \geq 1,} \\
\text{then } T(N+1) = T(N) + 2(N+1) - 1 \\
= N^2 + 2N + 1, \text{ by I. H.} \\
= (N+1)^2 \checkmark
\]

So true for all \(N \geq 1 \).
3. (12 points) Here is our Scala code for inserting a value in a binary search tree:

```
trait Tree
  case object Empty extends Tree
  case class Node(left: Tree, value: Int, right: Tree) extends Tree

def insert(t: Tree, n: Int): Tree = t match {
  case Empty => Node(Empty, n, Empty)
  case Node(l, v, r) =>
    if (n == v) // No change -- already in tree
      t
    else if (n < v)
      Node(insert(l, n), v, r)
    else // n > v
      Node(l, v, insert(r, n))
}
```

(a) Complete the following skeleton to define a function `insertAll` which takes a tree and a list of numbers and returns a new tree with all of the numbers inserted into the original tree:

```
def insertAll(t: Tree, nums: List[Int]): Tree = nums match {
  case Nil =>
  case head :: tail =>
    case head :: tail =>
      insert(insertAll(t, tail), head)

(continued)
```
(c) Give a tight big-oh upper bound on the average running time of `insertAll` in terms of the size of the list, \(N \) (assume that the initial tree is empty, and that the resulting tree is “balanced”):

\[
\text{insert is } O(\log N), \text{ so } \\
\text{insertAll is } O(\log 1 + \log 2 + \ldots + \log (N-1) + \log N) = O(N \log N)
\]

(d) Here is a version of inorder traversal which returns the visited items in a list (the ::: operator concatenates two lists; assume for this problem that this can be done in constant time):

```scala
def inorder(t: Tree): List[Int] = t match {
  case Empty => Nil
  case Node(l, v, r) => inorder(l) ::: List(v) ::: inorder(r)
}
```

Now we may define the following function:

```scala
def doSomething(nums: List[Int]): List[Int] = inorder(insertAll(Empty, nums))
```

What is the result of `doSomething(List(3, 1, 4, 1, 5))`?

\[
= \text{inorder}(\text{insertAll}(\text{Empty}, \text{List}(3,1,4,1,5)))
= \text{inorder}(3, 1, 4, 5) = \text{List}(1, 3, 4, 5)
\]

(e) Describe the effect of `doSomething(nums)` on an arbitrary list `nums` of type `List[Int]`:

it sorts nums and removes duplicates

(f) Give a tight big-oh upper bound on the average running time of `doSomething` in terms of the size of its argument, \(N \):

\[
\text{insertAll(nums) is } O(N \log N),
\text{ giving a tree with } N \text{ nodes; for inorder, } \\
T(N) = T(N/2) + O(1) + T(N/2), \text{ assuming balance } \\
= 2T(N/2) + O(1)
\]

so \(T(N) = O(N) \) hence `doSomething` is \(O(N \log N) \)